Class #13	STORYCODE Aim: How is the coded plot of a story related to the way computers function? CCLS STANDARDS:	Reading-Writing-Math Cont-Math Prac-Sci/Tech-CSTA
Do Now	(Groups) Use one of our 3 methods to show all the possible versions of "LorT?"	1, 3, 5, 6, S-CP-2, 1-7, 5.3.B:8,9
HW share	Anyone to read? Let teacher read? ID decision points of each version.	2,3,4,9,10, WHST-1a-c,e, 2a-e, 3, 4, 9
	Possible versions of "LorT?": It comes down to "decision points."	1, 3, 5, 6, S-CP-2, 2, 5.3.A:CT-9,11, B:CT-7-9
	1) 8 possibilities: how do we know that?	S-CP-2, 3
	A] Brute Force (> Code Box) ~ list on board ~ i. ID decision points chronologically; show horizontally: TK P L	3, N-Q1, 4, RST-1,3-5, 5.3.A:CT-3,8, B:CT-5
	ii. Record decisions of truth or trust as T, falsehood or mistrust as F.	3, 4, 5.3.A:CT-3,8, B:CT-7
	iii. Record each 3 symbol code in its B2 position, lowest to highest.	S-CP-1,6, N-VM-6, 4, B:CT-7
Share	iv. Names for each version, along with death or marriage.	1-3,5,6,8, S-CP-5, 1, RST-2-5, 5.3.A:CT-8, B:CT-5-7
Do Now	v. How can you tell we're done? (Can't. We need another method.)	2,5, 5.3.A:CPP-3, B:CT-4
/ Activity	B] Tree Diagram: 1 (TK) dec. pt> 2 (P) dec. pts> 4(L) dec. pts> 8 endings	S: CP-6, IC-3, 2, 4-8, RST-8, 5.3.A:CT-3,8, B:CT-5,6
	C] Function: permutations and exponential growth	A-SSE-1,F-LE-5,4,RST-8,5.3.A:CT-1,8,CPP:12,B:CT-4
	i. How does the number of T/F choices affect the number of possible versions?	S-CP-9, 2-5,7,
		A: APR-1, REI-1,2, CED-2, F: IF-1, BF-1a, LE-1a,
	ii. Permutation Function ~ on board: a. versions = (# of options per choice) raised to (# of choices) power	2-8, RST-8
	b. $f(x) = 2$ raised to (x) power	A: CED-1,2, APR-4, REI-4b, S: CP-9, MD-2,
		F: IF-2, BF-1c, 2-8, 5.3.A:CT-8
	2) What if the lady and the tiger could secretly switch places on their own? Show the versions for 4 decision points.	1,8, A-CED-4, F-LE-5, 1,4-8, 5.3.A:CT-8
	What do the decision points of "LorT?" have to do with computers?	RST-9, 5.3.A:CT-9,11, B:CT-7-9
	1) Computers work with information in the form of 1s and 0s. A] 1s and 0s can mean almost anything.	
	B] Meanings are determined by humans.	
	2) Using 1s & 0s requires a "protocol" = method/order of doing something	5.3.A:CT-3,8
Mini-	A] Define protocol for "LorT?" (Code Box) i. Symbol: T = trust, F = falseness ii. Position: TK> P> L	
Lesson 1	B] "binary" = system with only 2 parts (T or F in our case)	
	C] "binary protocol"= method/order of doing something w/only 2 elements	
	3) Switch the Code Box to 1s and 0s.	N-VM-6
	A] meanings of our symbols: T = True = 1, F = False = 0 B] meanings of our positions: 1st # = TK, 2nd = P, 3rd = L	5.3.A:CT-3,5,8, B:CT-5
	4) Do we need to record the ending with another digit?	A: CED-4, SSE-1, B:CT-4,5
	A] No. We can always figure the ending out from the 1st 3 digits.	5.3.A:CT-9, CPP-12
	B] Can you see any patterns for the endings? Single 0> death	A-SSE-1, 5.3.A:CT-8
	5) TK-P-L Code Box = a binary protocol	5.3.A:CT-9 B:CT-4,5
	ASCII, another Binary Protocol:	5.3.A:CT-11, B:CT-7,9
T:	1) What happens inside a computer when you press a key while typing?	
	2) The computer codes that letter as 1s & 0s then shows it on the screen.	5.3.A:CT-5
	3) Only the computer user sees this info. as anything other than 1s & 0s.	
Lesson 2	4) Hand out ASCII chart. A] = American Standard Code for Information Interchange	B:CT-6
	B] = a binary protocol for the computer to understand the English alphabet	5.3.A:CT-5
	C] 1 set of codes for lower case letters, 1 set for upper case letters	5.3.B:CT-4
	5) Does anyone know a simpler alphabetic binary protocol? <i>Morse Code</i>	5.3.A:CT-5, B:CT-4,6
HW	Write your name in ASCII.	5.3.B:CT-7